The Most Overlooked Variable in Training Today

That’s right, I said it. Mostly everyone who completes some sort of training program often neglects this variable without even realizing it. Actually, they train this variable, but with little to know realization. That variable is the angle of the shin during athletic, and non-athletic activity. Shin angle is involved with every aspect of human movement, not just sprinting, throwing or swimming.

Whether you are a seasoned coach, or a parent looking to get their young athlete to the next level, you have probably tried to develop the ability of shin angle change. However, you probably didn’t use the best cues/ reasoning to get your athlete to do what you exactly wanted them to do. On top of that, if they couldn’t do it, you probably looked at another area of the body to solve the problem.

The angle of the shin dictates the direction of the athlete’s center of mass. During bipedal locomotion, the relationship between initial contact of the foot and the angle of the shin quite literally determines where the athlete is going, and where they will be going.

Let’s take linear sprinting for example, a 40yd dash. The goal of the 40 yd dash is for the athlete to cover 40 yds of distance in as little a time as possible. There are a a million variables that separate the fast athletes from the slow athlete, but one of the most important variables is how efficient the athlete is with each step they take. According to force plate data, elite sprinters can produce and handle up to 2500 N of force, but those are elite level athletes. How do those guys train to attain that ability? It’s technique.

Your body is constantly learning how to handle and optimize what you are telling it to do. There are certain optimal positions that your body needs to be in to even attempt to produce high levels of force at an extremely high rate of speed. Just like pitching, hitting, swimming, etc. If your technique is not optimal, it won’t matter how strong you are, you won’t be able to use your strength efficiently. The position of the shin sets up the rest of the body to attempt to complete the task required.

We can classify shin angle into 3 different angles: Negative, neutral, and positive angles. Negative shin angle means the shin (tibia) is behind the the ankle and foot (talocural joint). A neutral shin angle is where the shin is stacked vertically and in-line with the ankle. Finally, a positive shin angle means the shin is positioned in front of the ankle joint.

Each position will dictate the direction of force, therefore the direction of the body. For example, if an athlete is attempting to slow down, they will automatically try to find their heel by striking the ground with it. This heel strike forces a negative shin angle, and shoots forces produced by braking in a front to back direction. The result is that athlete slows down to an eventual stop.

A neutral shin angle is associated with a more vertical direction of force, like jumping. A stacked shin allows the athlete to put their force in a mostly top to bottom / bottom to top direction, resulting in actions like standing up, jumping, and squatting.

A positive shin angle is the key to horizontal locomotion to a certain point. This is especially true for the acceleration phase of sprinting. Having the shin in front of the ankle when contacting the ground means the force produced is directed in a back to front direction, and the athlete is in a position to move forward with less braking forces to compete with.

The athlete’s ability to understand these positions will dictate their understanding of sprint mechanics. This is especially true for those of us who think taking bigger strides automatically means a faster sprint time. Let’s break that statement down a little further.

Sure, a longer stride will create more time in the air, therefore less time having to deal with those annoying braking forces. However, the question of “how” those athletes attain longer strides is what’s key. Simply taking longer strides will more than often not solve the problem, and actually create a slower athlete. The reason being is that athletes who attempt to take longer strides typically cast their foot out in front of their shin and knee. Why is that less than optimal?….. The answer is above! They are now creating a shin angle more conducive to slowing down, rather than speeding up.

 
Sprinter with positive shin angle at mid-stance

Sprinter with positive shin angle at mid-stance

 

What about running tall? Is this another cue you’ve used to help athlete’s sprinting ability? Sometimes this cue can work, but is often over-cued, and here’s why. A taller athlete is necessary during the late acceleration, and terminal velocity phases of sprinting. The athlete begins to rise out of their stance, and their force direction becomes more vertical. However, an athlete with a sprinting posture that is too tall, or even worse, too tall too early results in a shin angle that is too vertical! When athlete’s are sprinting “too tall” their shin is more neutral at initial contact, which is a position more optimal for a vertical force direction. In a race, where are we trying to go? Forward!

Now, don’t get me wrong, the direction you want to go in, at the velocity you are trying to attain is determined by the requirements of the moment. I am not saying a positive shin angle is the cure for male patterned baldness. The cure for optimized athletic performance starts with knowing how to get in and out of positions more efficiently than your competition. Because at some point an athlete will need to slow down, jump, change directions, etc. All I am saying is that you need to train the correct joint angles in movement to get the most out of your training.

I will close with this. Let’s get sprinting out of our head for 1 minute… don’t freak out, I’ll try not to. Look at other sports, and movements. When a swimmer leaves the blocks during a swim meet, what direction are they going? Forward. When a pitcher comes down the mound to deliver a pitch, what direction are they going? Forward. So, what shin angle would probably be best for optimal performance? A negative shin angle. Coaches must keep this fact when prescribing movement to their athlete, not only for the goals of enhanced performance, but injury prevention, and movement biasing as well.

 
Pitcher front shin preparing to decelerate (negative) back shin going forward (positive)

Pitcher front shin preparing to decelerate (negative) back shin going forward (positive)

positive shin angle on left leg

positive shin angle on left leg

 

If you made it this far, you might as well check out our instagram page (we post this stuff all the time) or maybe even our youtube channel.

If you’re still here you must really be bored, but to claim your reward, contact coach Nate at nate@tpstrength.com.

Backward Running: What is it? Why is it important? How do we use it at TP?

Backwards running (BR)  can be described in several ways, for our purposes, we will define BR as- as a form of locomotion containing a single leg support phase, followed immediately by double flight phase. Essentially, there is never a point in time where there are two feet on the ground. 

Your initial thought could be, why would I ever need to run backwards if I am not a defensive back in American football? While this may be true, the physiological benefits of BR are quite extensive, and they have been proven to translate to increased sprint and sport performance. Some key differences between BR and forward running (FR) include a very basic one… you can’t see where you are going! This means that you must rely on other senses, such as sound, to help you dictate where your body is in space. BR places greater metabolic strain (28%) on the body at relative and absolute intensities (Uthoff, at el 2018). BR does not utilize the stretch shortening cycle like FR, so there is a higher demand for concentric and isometric contractions. In studies comparing BR and FR programs, similar performance increases in sprint speed and jump height were shared between the groups, researchers have also shown less mechanical strain at the knee when compared to FR as well, suggest possible rehab modalities.

Just like any physical gesture, it must be taught. While backwards running for a baseball player may not be the number one aspect of their training program, it can be used as an accessory movement to help develop sprinting, and other athletic abilities. Our training sessions are designed to build toward the goal of the session. This means, if the primary goal of the session is to perform a linear sprint for 30 yards as fast as possible, everything we do from plyometrics, to technical drills will be to enhance that sprint. It may sound easy to go tell an athlete to “run as fast as you can from here to there.” But, without proper warm up protocols, and preparation movements to get the athlete to their peak potential in that moment, the net return in adaptation from the sprint will be compromised. 

With that being said, we use backward running as a one of our warm up movements to help potentiate athletes for future movements in the session. I will list some examples of backwards movements below: 

REACH BACKS TO PAUSE, REFLEX, HOP, CONTINUOUS

BKWDS POGOS

SL RDL

FIGURE 4 TO KICK BACK PAUSE, REFLEX, INDIVIDUAL, CONTINUOUS

REVERSE LUNGE

REACH BACK RUN 

ALT REVERSE HOPS, SINGLE, DOUBLE, CONTINUOUS 

To what degree we use each of these movements depends on the group present, time of year, and goal of the session. Due to the increased metabolic demand, one must make sure not to spend too much time working in reverse, as you can fatigue the athlete, and take away from performance. However, if the focus of the session is backward running development, the majority of the day is spent in reverse. We use a day like this as an “Active Recovery Day” to get the athletes out of their normal running patterns to give those muscle actions a chance to recover, while still getting development in other areas. 

The benefits of BR can be extensive. How much we use it is dependent on athlete status, athlete’s sport, time of year, and goal of the session. If prescribed appropriately, BR can help develop several athletic qualities! 

Thank you for your time!

Coach Nate Garcia 

nate@tpstrength.com

tim@tpstrength.com

scott@tpstrength.com 

914-486-7678

Instagram: tp_strength

References:

Cronin J, Harrison C, Oliver J, Uthoff A, Winwood P. A New Direction to Athletic Performance: Understanding the Acture and Longitudinal Responses to Backward Running. 2018

How to Implement the A-Skip Progression into Your Speed Program (PT 1)

We have covered what the ASP is, now it is time to program it into your speed development program! 

In the very beginning, as I have mentioned several times before, this is a teaching tool! Most novice athletes lack proper strength and coordination when it comes to sprinting. Our goal with the ASP is to use it as a warm up drill before sprinting, but before we can do that, the athlete must demonstrate movement mastery so it does not over tax the athlete’s readiness level. The parameters for this discussion are as follows: 

Age: 16

Sport: Baseball/football

Position: Wherever you need me coach

Time of Year: Winter

Training Duration (Sprint only): 60 minutes

Being a multisport athlete, post peak height velocity, we can assume that this student has a solid athletic background and should be able to progress through our ASP relatively quickly…. but let's not get crazy yet. 

The first 10-12 minutes of the session will include our dynamic warm up and group preparation series. The goal of the warm up is to elevate the athlete’s readiness level by prepping the joints for specific movements, inducing thermogenesis, increasing blood flow to the working muscles, and tuning up the central nervous system for work. Since we use the ASP during our acceleration focus days, our warm up will match the necessary qualities associated with acceleration mechanical and physiological demands. Typically, the segment length of the warm up is 10-20 yards. Since this is the beginning of our athletes training, and we do not want to negatively affect our training, the segment will be on the shorter side (10 yards). If the athlete requires any “special” warmup drills that we noted from our screening process, we will include this as well. 

We then move into the plyometric section of the day. This portion will be 8-10 minutes in length, with plenty of rest opportunities between sets. Acceleration qualities include a longer amortization phase (longer ground contact time), and high force output. We are forcing the body to get out of a stand still position, and up to speed as quickly as possible. Our plyometrics will match these qualities. We will either go with “Hurdle Hops” or a “Broad Jump” series. I will save the “why” behind these drills for another post, but essentially these drills develop the same qualities associated with the ASP and acceleration. This helps get the athletes mind ready for the focus of the day. 

After plyometrics, we move into the technical/ strength section of the session. This is where we implement the ASP. Later in the training cycle, the ASP will be used as a plyometric, but as I said before… we are still in the teaching phase of the progression. We love pairing other drills with the ASP, but we have to be cautious not to over fatigue the athlete and take away from their learning ability. Drills such the wall drill, sled tow/push, and arm drill are appropriate and share similar qualities with the ASP. The ratio of reps for the ASP to other drills should favor the ASP heavily (3-5:1-2). Segment length for the ASP should stay between 10-15 yards depending on which stage the athlete is able to complete. This will be the longest segment of the progression lasting between 15-20 minutes. 

We conclude the session with sprints. The early stages of speed development will not include many sprints. Since our focus is acceleration, the distance will be kept under 10 yards. This is the shortest segment of the session lasting 7-10 minutes, with ample opportunity for rest between bouts. A personal preference of mine is to keep to the theme of the day (acceleration teaching) I will either keep the athlete in a 2 point linear start stance, or baseball start stance. A volume of 4-8 sprints with a recovery period of walking back to the starting line +15-30 seconds (maybe more if I need to make a coaching cue). 

In the very beginning, rest periods should be longer between segments. Learning a new skill requires as much focus as possible. Intentionally fatiguing the athlete will take away from their ability to learn, and prolong movement mastery. Once there is a foundation of movement competence, we can start building some work capacity with our speed sessions; keeping in mind that it all depends on the goal of the session. If we are trying to run as fast as possible that day, the parameters of previously mentioned completely change, and work capacity shouldn’t even be a thought in your head!

Thank you for your time!

Coach Nate Garcia 

nate@tpstrength.com

tim@tpstrength.com

scott@tpstrength.com 

914-486-7678

Instagram: tp_strength

Training Specificity

When starting to train for speed and strength, what must come first is strength. Your body is a machine, and that machine must be prepared for the amount of work you will be exposing it to, or it will break down. It is possible to develop a foundation of strength through any number of programs, and for the most part as long as consistency is apart of that program you will succeed. When training myself, or my athletes, I have found great success in following simple programs that cover basic movement patterns repeatedly. Learning how to: squat, hinge, push, pull, rotate, and bend train the entire working system, to improve the qualities of these movements so we can appropriately overload the body and improve performance. 

Once we have established a solid foundation to build on, we can than further specify training modalities to attack the goal that we are training for. At this point I would like to introduce unilateral and bilateral training. Unilateral training indicates we are working one side of the body (typically dividing the body in the sagittal plane), and bilateral is both sides of the body. For example, a unilateral exercise would be the reverse lunge, and a traditional back squat is an example of a bilateral exercise. 

Bilateral exercises are great for force output. You are obviously stronger on two legs compared to one, however there is also a greater opportunity to compensate a movement and still complete it. This is a problem! Compensation patterns lead to efficient movement, lack of training adaptation, and injury! With unilateral movement, there is also a possibility of movement compensation, but the difference between the two is a unilateral movement compensation is more easily noticed and often leads to failure of movement completion. 

Unilateral movements are often more closely related to the movements required in sports. Sprinting is a unilateral plyometric. There is never a moment in time where there is two feet on the ground at the same time after the start! One of the goals of strength training is transferability to the field, and if I can more closely mimic a movement and load it safely, I will. With this principle in mind, let me discuss the back squat and reverse lunge. Neither of these movements are directly transfer to a sprint, but the reverse lunge is primarily completed on one leg (just like sprinting). The squat will work the same muscle group, and sprint performance will improve, but it will only take your improvements so far (the point of diminishing returns). Unless you participate in a barbell sport, there comes a certain point in training where the goal should shift from improving a squat number to improving athletic performance via movement specificity. 

I will continue to discuss how to improve training specificity for athletic improvement in the weight room with future posts! Thanks for reading! 


Coach Nate Garcia 

nate@tpstrength.com

tim@tpstrength.com

scott@tpstrength.com 

914-486-7678

Instagram: tp_strength