The Most Overlooked Variable in Training Today

That’s right, I said it. Mostly everyone who completes some sort of training program often neglects this variable without even realizing it. Actually, they train this variable, but with little to know realization. That variable is the angle of the shin during athletic, and non-athletic activity. Shin angle is involved with every aspect of human movement, not just sprinting, throwing or swimming.

Whether you are a seasoned coach, or a parent looking to get their young athlete to the next level, you have probably tried to develop the ability of shin angle change. However, you probably didn’t use the best cues/ reasoning to get your athlete to do what you exactly wanted them to do. On top of that, if they couldn’t do it, you probably looked at another area of the body to solve the problem.

The angle of the shin dictates the direction of the athlete’s center of mass. During bipedal locomotion, the relationship between initial contact of the foot and the angle of the shin quite literally determines where the athlete is going, and where they will be going.

Let’s take linear sprinting for example, a 40yd dash. The goal of the 40 yd dash is for the athlete to cover 40 yds of distance in as little a time as possible. There are a a million variables that separate the fast athletes from the slow athlete, but one of the most important variables is how efficient the athlete is with each step they take. According to force plate data, elite sprinters can produce and handle up to 2500 N of force, but those are elite level athletes. How do those guys train to attain that ability? It’s technique.

Your body is constantly learning how to handle and optimize what you are telling it to do. There are certain optimal positions that your body needs to be in to even attempt to produce high levels of force at an extremely high rate of speed. Just like pitching, hitting, swimming, etc. If your technique is not optimal, it won’t matter how strong you are, you won’t be able to use your strength efficiently. The position of the shin sets up the rest of the body to attempt to complete the task required.

We can classify shin angle into 3 different angles: Negative, neutral, and positive angles. Negative shin angle means the shin (tibia) is behind the the ankle and foot (talocural joint). A neutral shin angle is where the shin is stacked vertically and in-line with the ankle. Finally, a positive shin angle means the shin is positioned in front of the ankle joint.

Each position will dictate the direction of force, therefore the direction of the body. For example, if an athlete is attempting to slow down, they will automatically try to find their heel by striking the ground with it. This heel strike forces a negative shin angle, and shoots forces produced by braking in a front to back direction. The result is that athlete slows down to an eventual stop.

A neutral shin angle is associated with a more vertical direction of force, like jumping. A stacked shin allows the athlete to put their force in a mostly top to bottom / bottom to top direction, resulting in actions like standing up, jumping, and squatting.

A positive shin angle is the key to horizontal locomotion to a certain point. This is especially true for the acceleration phase of sprinting. Having the shin in front of the ankle when contacting the ground means the force produced is directed in a back to front direction, and the athlete is in a position to move forward with less braking forces to compete with.

The athlete’s ability to understand these positions will dictate their understanding of sprint mechanics. This is especially true for those of us who think taking bigger strides automatically means a faster sprint time. Let’s break that statement down a little further.

Sure, a longer stride will create more time in the air, therefore less time having to deal with those annoying braking forces. However, the question of “how” those athletes attain longer strides is what’s key. Simply taking longer strides will more than often not solve the problem, and actually create a slower athlete. The reason being is that athletes who attempt to take longer strides typically cast their foot out in front of their shin and knee. Why is that less than optimal?….. The answer is above! They are now creating a shin angle more conducive to slowing down, rather than speeding up.

 
Sprinter with positive shin angle at mid-stance

Sprinter with positive shin angle at mid-stance

 

What about running tall? Is this another cue you’ve used to help athlete’s sprinting ability? Sometimes this cue can work, but is often over-cued, and here’s why. A taller athlete is necessary during the late acceleration, and terminal velocity phases of sprinting. The athlete begins to rise out of their stance, and their force direction becomes more vertical. However, an athlete with a sprinting posture that is too tall, or even worse, too tall too early results in a shin angle that is too vertical! When athlete’s are sprinting “too tall” their shin is more neutral at initial contact, which is a position more optimal for a vertical force direction. In a race, where are we trying to go? Forward!

Now, don’t get me wrong, the direction you want to go in, at the velocity you are trying to attain is determined by the requirements of the moment. I am not saying a positive shin angle is the cure for male patterned baldness. The cure for optimized athletic performance starts with knowing how to get in and out of positions more efficiently than your competition. Because at some point an athlete will need to slow down, jump, change directions, etc. All I am saying is that you need to train the correct joint angles in movement to get the most out of your training.

I will close with this. Let’s get sprinting out of our head for 1 minute… don’t freak out, I’ll try not to. Look at other sports, and movements. When a swimmer leaves the blocks during a swim meet, what direction are they going? Forward. When a pitcher comes down the mound to deliver a pitch, what direction are they going? Forward. So, what shin angle would probably be best for optimal performance? A negative shin angle. Coaches must keep this fact when prescribing movement to their athlete, not only for the goals of enhanced performance, but injury prevention, and movement biasing as well.

 
Pitcher front shin preparing to decelerate (negative) back shin going forward (positive)

Pitcher front shin preparing to decelerate (negative) back shin going forward (positive)

positive shin angle on left leg

positive shin angle on left leg

 

If you made it this far, you might as well check out our instagram page (we post this stuff all the time) or maybe even our youtube channel.

If you’re still here you must really be bored, but to claim your reward, contact coach Nate at nate@tpstrength.com.

The 7 Laws of Strength Training (according to Dr. Tudor Bompa

What separates performance coaches from everyday personal trainers is our ability to develop and appropriately modify a program for athletes. With each athlete that walks in the door, there is a new set of problems that require a completely new set of solutions. There is no “cookie cutter” solution book that will apply to every athlete. There are “laws” of training we must follow, but how these laws are enacted will differ from person to person. 

Develop Joint Mobility: 

Having good joint mobility will help prevent pain and injury down the road. When someone lacks a range of motion at a joint, the body will compensate in some form or fashion to ensure the completion of the movement. Over time, this compensation pattern will lead to muscular imbalances and higher risk of injury. As a species, humans have the same joint set up across the kinetic chain, (ankle, knee, hip, etc). How well we are able to utilize each joint’s movement is different from person to person. Lifestyle demands of an individual will determine how well these joints operate. Knowing this alone, we can not assume the same tool will solve everyone’s problem. In the world of sports performance, the demands of a sport, and the demands of a position within that sport will dramatically alter the training for the athlete. A program we use for a pitcher will differ from that of a wide receiver. 

Develop Ligament and Tendon Strength: 

Often overlooked due to lack of aesthetic qualities associated with healthy ligaments and joints, the importance of having a strong joint capsule is crucial to successful performance. A ligament is a form of connective tissue running from bone to bone, and it helps maintain the integrity of the joint. The tendon has a similar role, but the tendon connects bone to muscle, and aides in force distribution. The majority of injuries do not occur at the muscle belly, but rather at the myotendinous junction. Without a proper training protocol, tendons and ligaments may be inadequately prepared to handle the forces being transmitted through them. Exposing the body to ever increasing stress levels, while allowing enough recovery between bouts of stress will increase the connective tissue’s ability to handle more and more stress. 

Develop Core Strength: 

In this blog, I will define the core as trunk musculature. The trunk not only houses the vital organs of a human, the muscles associated with trunk are supposed to provide a stable surface for the limbs to operate on. Looking at a squat, our hip and leg musculature may be able to handle to perform a 500lb squat, but if our trunk is not up to the task, the lift will surely fail. A less extreme example would be someone’s posture. “Poor posture” will lead to muscular imbalances that prevent efficient human movements like walking, thoracic rotation, trunk flexion and extension amongst many others. When the core is weak/ imbalanced, it negatively affects the performance of other movements. 

Develop the Stabilizers:  

Stabilizers aide in movement ability by stabilizing the active joint will a gesture is being performed. Isometric contractions at the joint prevent joint separation. If a joint lacks stabilizer strength, the prime movers of the joint must now act as stabilizing muscles which in turn take away from performance. Unilateral training, and unstable surface training are different modalities utilized to enhance joint stabilization. In the world of athletic performance, we must be careful not to spend too much time emphasising joint stabilization, since the co-contraction of muscles from each side of the joint can take away from strength and power production.

Do not isolate joints

If your goal is to be better at your sport, and that sport is anything besides bodybuilding, you must develop the entirety of the kinetic chain. There is a time and a place for isolated joint exercises like a knee curl, or hip flexion, do not get me wrong. But, when we isolate muscles, we take away from the body’s ability to coordinate movements. In sports, there are literally a million different body alignments the athlete can be exposed to. While we cannot pre-expose our athletes to all of them, we can enhance inter-muscle synchronization and develop strength in these positions to help enhance performance and prevent injury. 

Focus on the Needs of the Athlete

At the beginning of this blog I said each athlete will have a new set of problems requiring a new set of solutions, and this is true. However, this does not mean we need to reinvent the wheel for each individual. People who play the same sport, or have a similar lifestyle will require a lot of the same training. Variables such as frequency, exercise type, intensity, and volume are often what is changed. There is yet to be discovered a magic exercise tool that will make someone faster and stronger. What people actually require is appropriate exposure to increasing stressors with appropriate rest periods to ensure adaptation. No vibrating belt, or ankle bands will make you lose fat and get faster. Eating right, being consistent in the gym, and a well throughout program will improve your performance. 

Plan for the Long Haul

Too often do I see kids wanting to throw their hardest at 16 years old, or run their fastest as a middle schooler. There is a way to get the most out of the body at each stage of development, but it is often done at a price. Premature exposure to advanced training techniques will often to a short playing career. When exposing a developing body to advanced training methods, you will not get the same amount of adaptation if you were to wait until the athlete was more mature. The stress is often mismanaged, and overtraining ensues. 

Performance specialists are a different breed of coaches. When someone stays up to date on the latest research, can apply the knowledge gained from text and past experience, keep the athlete safe and peak at the right time, the only possible outcome is success. Applying outdated training practices to every client that walks through the door will lead to lack of training adaptation, frustration, and eventually cessation of training. 

Thank you for your time!

Coach Nate Garcia 

nate@tpstrength.com

tim@tpstrength.com

scott@tpstrength.com 

914-486-7678

Instagram: tp_strength