Velocity Based Training or Percentage Based Training?

There are various ways to prescribe training intensity and volume. Who, what, where, when, why, and how are often debated. At the end of the day, what is going to work best for you and your athletes?  

Force and velocity have an inverse relationship. As force increases, velocity decreases. So, the heavier the load, the slower the speed and the emphasis of the session is strength dominant. If your goal is speed, the load will be lighter, and the bar will move faster. These are the two ends of the force velocity curve. Whether we realize it or not, when we train power athletes, we are attempting to shift this curve up the graph. If we are able to do this, we can now move the same load at a faster velocity. This happens with essentially any form of training, especially those just starting out. The real question lies in which method will produce better results?

Velocity based training alters the intensity of training on a rep to rep basisis. Typically we are measuring the velocity of the bar during concentric contraction. How fast can you move the bar at a given load? Based on the speed of the bar, and the goal of the session, the load is altered to match the emphasis of the session. Each velocity is associated with a different training outcome. Different people have different parameters for each outcome i.e. max strength, strength speed (power high load), or power. In my opinion, if you believe 0.8m/s is associated with power high load, and the goal of the session is to improve power high load, then you better be at 0.8m/s.

Percentage based training dictates intensity based on some form of concentric failure test. Most commonly, they are based around a 1 rep max test. The athlete attempts to lift as much weight as possible for one repetition. We are then able to work at submaximal loads based around this test. With each submaximal load, there is an associated rep scheme that gives the athlete an idea of how many repetitions they should be able to complete. The more reps you can do, the further you are from your potential 1 rep max.

Some would consider volume and intensity the most important factors when prescribing a training protocol. What can affect the completion of the prescribed training is the fatigue level of the athlete. Velocity based training essentially accounts for rep to rep changes in the athlete’s preparedness level by measuring each rep’s speed. For example, if an athlete is attempting to move a load at .8 m/s, and the first set they are able to do this. As the session proceeds, their ability to move at .8 m/s is hindered by fatigue, and they are no longer able to move the same load at that velocity. In order to maintain a bar speed of .8 m/s, we must decrease the load. This can be time consuming, and other variables just as rest, and weight room flow can be effected. If you are prescribing loads based on percentages, you are neglecting the athlete’s current readiness level. So, what may be 80% today, may be 82% tomorrow. While this may seem like a minor detail, but neglecting this few pounds over an extended period time could result in over training.

Velocity based training has shown to better enhance training outcomes such as max strength, and power. This is accomplished by recieving immediate feedback on rep performance. With this feedback mechanism we are able to more accurately prescribe loads for athletes to accomplish training outcomes while decreasing the possibility of over training. However, there is no one solution, or best answer when it comes to training. Velocity based training is great, and performance has been shown to increase when prescribed accurately, but let’s not take away from the credibility of percentage based training. This method of load prescription has been around for a long time, it is heavily researched, and is still extremely prevalent in today’s weight rooms. More so, if an athlete lacks the understanding of maximal intent, velocity based training will be compromised. Without max intent, bar speed numbers are unreliable, and the training outcome will be negatively effected. 

Why do it on Two, When you can do it on One

A hot topic of discussion between us strength coaches is the benefits of unilateral and bilateral training. For years now, and we have been taught “if we can’t do it on two, we shouldn’t be doing it on one!” There is merit to this, no doubt. What your body does to accommodate loading on one leg is a totally different neural pattern compared to two legs, and it will lead to different training adaptations. Bilateral exercises such as the squat, deadlift, and RDL have been proven to be useful exercises to improve strength and power that transfers to on field performance. Unless you participate in a bar sport like powerlifting, you may not be getting as much out of these lifts as you think.  

We are asymmetrical creatures, we are never going to perfect balanced no matter how hard we to strive to attain symmetry. When you play an asymmetrical sports such as baseball, the asymmetries are further attenuated. While your body adapts to these asymmetries, the possibility of injury tends to increase. While a lot of movements in the weight-room are performed on two limbs, athletes can hide asymmetries in these bilateral movements. Over time something will give on the field or in the weight-room that causes an injury. In unilateral movements, hiding compensation patterns is almost impossible! It can actually highlights the flaws in the system. While we may never be symmetrical (maybe we aren’t supposed to be) if I can close the gap between left and right, the total system benefits. 

The majority of athletic activity takes place on one leg. Running, cutting, jumping all take place on one leg; the amount of time spent on two limbs is not as often as your would think. The body relies on each individual limb to produce force to propel the body forward; while the opposite leg prepares for ground contact. Bilateral movements like the squat train the appropriate muscle groups required to improve performance, however it is not a movement athletes often experience on the field. A big counter argument is that you are stronger/ more powerful on two legs compared to one, and this is true… in the moment of the lift. 

The bilateral deficit is a term used to describe the sum of two limbs lifts has a greater total load compared to using two legs at the same time. For example, athlete A can back squat 300lbs. But,  he can single leg squat 155lbs on each limb individually and this totals to 310lbs. If the rep and set scheme is the same between the two exercises, total tonnage will be greater with the single leg squat compared to the back squat; which would elicit greater adaptation (maybe). 

Finally, two limb movements do not always equal improvements with one limb movements, while one leg movements can further improve the ability of two limb movements. In my experience, my athletes have trained primarily on two limbs, while often neglecting unilateral movements. With that being said, their RDL strength and coordination completely exceeds their Single Leg RDL ability (most cannot even get into the position). This is troublesome because we ask these athletes to perform single leg plyometric exercises such as a sprint on a daily basis. The Single Leg RDL almost directly mimics the requirements of the sprint, and if these guys can hardly get in the correct position in a controlled, unloaded environment… I cannot expect them to have any type of advanced sprint ability. I want to change our current mindset that you should be able to perform a movement on two limbs before you attempt it on one. I think we should train single limb ability before attempting bilateral movements. 


Thanks for your time!

Coach Nate Garcia 

nate@tpstrength.com

tim@tpstrength.com

scott@tpstrength.com 

914-486-7678

Instagram: tp_strength



Heavy and Slow- The Relationship Load has with Speed

At the base of any athlete’s development is strength. Without strength, the likelihood of injury goes through the roof, and performance suffers considerably. What does this mean for speed development? When should you lift heavy and slow, and when should you lift light and fast? 

First, let me clarify “heavy and slow.” The intent of most movements when training for performance should be “move this as fast as possible.” With that being said, if you throw on 90% of your 1 rep max, that movement ain’t going to be performed with any type of speed. Heavy and slow simply implies that the speed of the movement is slowed down because the load forces it to. How does this aide in speed development? That question has many applicable answers, in this post we are discussing the similarities between “heavy and slow” and the start phase of a sprint through acceleration. 

At the beginning of the sprint, the amount of time an athlete spends in ground contact is much longer compared to the ground contact time of the max velocity phase. This means that the athlete has more time to develop force! Just like a heavy squat or split squat, the increased time under tension gives the body the ability to recruit more and more muscle fibers to help accomplish the task of accelerating. 

When we train our athletes, there is a goal behind the session. If the goal of the session is to target acceleration ability, we do more than some 10 yd sprints. The whole microcycle will be tailored to acceleration via intensity, speed, and direction of movement. The intensity of the main movements will be high. In regards to the force velocity curve, loads will be in the strength speed-max strength areas. The speed of the movement will be slower, but the intent is high. The horizontal force application associated with acceleration will also be mimicked with, hip dominant movements, that primarily occur in the sagittal plane (more so posterior -> anterior). Multijoint, hinging movements such as the Roman Deadlift accomplish that. 

Always have a purpose behind your training. If your goal is to improve speed, then break down the phase of sprinting, and focus on the qualities of each phase. Starting/ accelerating require a high level of force production, and you have more time to produce the necessary force to get to speed. While lifting small loads for speed serves a great purpose, it is not always the right answer.


Thanks for your time!

Coach Nate Garcia 

nate@tpstrength.com

tim@tpstrength.com

scott@tpstrength.com 

914-486-7678

Instagram: tp_strength



Training Specificity

When starting to train for speed and strength, what must come first is strength. Your body is a machine, and that machine must be prepared for the amount of work you will be exposing it to, or it will break down. It is possible to develop a foundation of strength through any number of programs, and for the most part as long as consistency is apart of that program you will succeed. When training myself, or my athletes, I have found great success in following simple programs that cover basic movement patterns repeatedly. Learning how to: squat, hinge, push, pull, rotate, and bend train the entire working system, to improve the qualities of these movements so we can appropriately overload the body and improve performance. 

Once we have established a solid foundation to build on, we can than further specify training modalities to attack the goal that we are training for. At this point I would like to introduce unilateral and bilateral training. Unilateral training indicates we are working one side of the body (typically dividing the body in the sagittal plane), and bilateral is both sides of the body. For example, a unilateral exercise would be the reverse lunge, and a traditional back squat is an example of a bilateral exercise. 

Bilateral exercises are great for force output. You are obviously stronger on two legs compared to one, however there is also a greater opportunity to compensate a movement and still complete it. This is a problem! Compensation patterns lead to efficient movement, lack of training adaptation, and injury! With unilateral movement, there is also a possibility of movement compensation, but the difference between the two is a unilateral movement compensation is more easily noticed and often leads to failure of movement completion. 

Unilateral movements are often more closely related to the movements required in sports. Sprinting is a unilateral plyometric. There is never a moment in time where there is two feet on the ground at the same time after the start! One of the goals of strength training is transferability to the field, and if I can more closely mimic a movement and load it safely, I will. With this principle in mind, let me discuss the back squat and reverse lunge. Neither of these movements are directly transfer to a sprint, but the reverse lunge is primarily completed on one leg (just like sprinting). The squat will work the same muscle group, and sprint performance will improve, but it will only take your improvements so far (the point of diminishing returns). Unless you participate in a barbell sport, there comes a certain point in training where the goal should shift from improving a squat number to improving athletic performance via movement specificity. 

I will continue to discuss how to improve training specificity for athletic improvement in the weight room with future posts! Thanks for reading! 


Coach Nate Garcia 

nate@tpstrength.com

tim@tpstrength.com

scott@tpstrength.com 

914-486-7678

Instagram: tp_strength



Training for Acceleration

Take a moment, and picture yourself running as fast as you can. How did you get to top speed? Well, at some point you have to start moving! This is the acceleration phase of sprinting. There are two other phases, and these are max velocity and deceleration. At Total Performance, we train these phases individually. This blog post will be discussing the acceleration phase, and how we target the training required to improve acceleration ability. 

Some of you may be thinking, what is the difference between acceleration and max velocity? Why separate the two, when you are trying to be as fast as possible in each phase? Yes, they are similar in some ways, and the goal is to “be fast.” However, what your body does in order to get to max velocity is different than what it does once it has reached max velocity. Some big differences include are the magnitude, and direction of force applied while accelerating. Acceleration has a more horizontal application, while max velocity is more vertical. Also, during acceleration, you spend more time on the ground. This allows you more time to generate more force. Acceleration training should match the requirements of acceleration. 

So, if we are aiming to match the requirements of acceleration in the weight room, things like: the primary direction of the movement, the load of the movement, and the intent of the movement should be manipulated as such. Acceleration requires starting strength, you must get your mass moving forward as fast as possible. If you are weak, your ability to accomplish this is hindered. Max strength training requires heavier loads, and slower movements. Because of the horizontal force direction associated with acceleration, max strength training movements that put the body through a similar pattern should be the primary movements of the session. Roman Deadlifts (RDL), Hip Thrust, Split squat, and Single Leg (SL) Hip Flexion are a few possible exercise selections that I use to train acceleration. The RDL and Hip Thrust both target the hip hinge pattern. The primary action of hip hinge requires hip extension and flexion primarily occurring anteriorly, and posteriorly (forward and backward); here’s your horizontal force application. The Split Squat, and SL Hip Flexion are also movements that improve hip flexion and extension abilities, and they are unilateral (completed on one leg)! During all phases of sprinting, once you start, there is never a point in time in which you have two feet on the ground. So, you cannot rely on the force production of two legs at the same time, you have to rely on one. Neglecting this fact is a poor decision IMO. Finally, the intent of the movement should be to move fast concentrically. The benefits of having the intent to move weight as fast as possible are numerous, and we can discuss them later. Right now, all you need to worry about is “I gotta move this sh** fast” to train the qualities of acceleration. 

Plyometric type, and timing is also a major factors to consider. Plyometrics should check the same boxes of acceleration like direction, and force application. Broad jumps, and single leg bounds are a couple of examples. The timing refers back to the PAP post we had a few weeks ago. I will save that can of worms for another day. 

There are entire textbooks associated with sprinting, and acceleration. These are some basic facts and opinions to consider next time you want to train for speed.

 

-Thank you for your time! If you have any questions please let us know!

Coach Nate Garcia 

nate@tpstrength.com

tim@tpstrength.com

scott@tpstrength.com 

914-486-7678

Instagram: tp_strength



Variable Resistance Training (Bands and Chainz)

If you follow my personal instagram page, you will notice I am a big fan of utilizing bands and chains as alternative resistance methods, but what’s the point? Yeah, they look cool, and sure they provide a little more resistance to the exercise (at certain points) but what’s really going on when you load up 50lbs of chains to the bar, or add 50lbs of tension with some bands? 

VRT provides altering amounts of external resistance throughout the movement. Bands are more versatile compared to chains in this aspect, due to the fact that they can resist or assist the movement. In a squat, with the bands pulling the bar to the floor, lowering the bar will result in a decrease in stretch of the band and a decrease in resistance. Standing up will stretch the band, thus increasing the resistance of the band. Bands hanging above the bar does the opposite. Do not over think these mechanisms! Chains provide no elastic qualities, so they only provide added resistance in this instance. When lowering the bar, the chains will coil on the ground and resistance from the chains decrease. Standing up will uncoil the chains and provide added resistance to the movement. 

There are parts certain points of every exercise that require the most effort to complete the task. Referring back to the squat, just above the bottom of the movement is the “sticking point” of the movement. This is where you feel the most amount of resistance, and this is where the majority of failed reps occur. Once you pass the sticking point, the ability to complete the movement is almost a given. Why attempt to make this more difficult by adding chains and/or bands? 

Of the many goals associated with strength training, one of them is to improve inter/intra muscular coordination. Intermuscular coordination is the coordination of contraction between different muscles, while intramuscular coordination is the coordination of the individual muscle’s firing pattern. Traditional free weight training (FWT) will provide the required stimulus to improve the neural adaptations listed above. However, let’s go back to the squat. The time between the “sticking point,” and the completion of the rep. The mechanical advantage we gain during this segment of the exercise is such that our muscles do not require the same amount of force production to complete the rep! This is where chains and bands come into play. They provide the extra resistance through the easier portions of the lift. So, this gap of mechanical advantage is now filled with added resistance that provide a greater stimulus, and inter/intra muscular coordination between these two points will increase as a result. 

This blog barely scrapes the surface of VRT implementation. This modality of training is a personal favorite of mine due to the fact that; VRT provides variation to commonly completed movements, and bands and chains are not expensive relative to other resistance mechanisms. I hope to dive deeper into this form of training and the role it plays in previously discussed topics, like plyometrics. 


-Thank you for your time! If you have any questions please let us know!


Coach Nate Garcia 

nate@tpstrength.com

tim@tpstrength.com

scott@tpstrength.com 

914-486-7678

Instagram: tp_strength



Concurrent Training: Aerobic and Strength

The active stereotype for the weightlifting community is that cardio is the devil that must be avoided at all costs to ensure the best gains, and to an extent, they would be correct. However, just like any training plan, if the variables of the training are manipulated appropriately then you can see benefits on both sides of the spectrum. 

We have discussed the energy systems with some detail in previous posts. If you haven’t had the chance to review them, now we be a good time to scroll down and take a look. We have three primary energy systems (phosphagen, anaerobic glycolysis, aerobic glycolysis) and all three of those systems play into each other and we use all three systems everyday. In my opinion, to neglect one system in totality is a poor decision and it can lead to a plateau in training effects or even detraining. If you have a goal in mind that you are training for, then your training focus should aim to accomplish that goal. A first baseman does not have to be able to run 1600m as fast as possible, but they do require the ability to play 162 games in roughly 170 days. 

Aerobic training is not just running miles on end and puking from exhaustion. It serves a greater purpose than bettering the ability to run long distance, it is a pillar in the ability to recover. When planned appropriately, cardiovascular training can facilitate strength and power advancements for the strength and power athletes. If that is the case, what does appropriate planning look like? It depends! If you are participating in a power dominant event (baseball, long jump, 100m sprint) training in the aerobic zone should be accomplished at different points in your annual plan. The further away from the  competitive season, the more aerobic based training you can include. Also, including aerobic conditioning in the middle of a competitive season can be appropriate in order to facilitate active recovery between events. These particular athletes require low level aerobic conditioning (50-70% BPM of HRmax) that does not interfere with strength improvements. Not only does this modality not interfere with strength training, but the athlete was able to simultaneously improve cardiovascular and strength abilities. The time between these two sessions was a key variable, and the overall consensus was a minimum of 6 hours between training bouts of strength and aerobic conditioning. 

Keeping the goal of training in mind, a stimulus that promotes a person’s recovery ability is something that cannot be ignored. The metabolic adaptation that occurs with aerobic training is an adaptation that lasts much longer than the adaptations of power and speed training, so once a foundation is established, it does not take much to maintain this adaptation. The improved cardiovascular ability facilitates blood flow to working musculature, the more blood that is pumped through your skeletal muscles, the greater the ability to resynthesis necessary energy substrates needed for explosive movements, improvements in fat utilization as an energy source so that carbohydrate utilization can be reserved for highly intense work, and increased clearance of biochemical stressors associated with strength training. I can write a book on the benefits of aerobic training, but to see advancements in your training goal, variables such as: frequency, duration, intensity, and modality must be planned carefully. 

Looking at this topic from the other side of the training spectrum, the long distance athletes that also strength train. Essentially, the training considerations of the strength/power athlete flip. The endurance athlete can benefit from strength training as long as it is planned appropriately. These athletes often see immediate improvements in performance because they are often not exposed to strength training. These improvements are due to the body's improved ability to absorb and redistribute force when running, and prevent injuries. Strength training the endurance athletes is not something I have spent a lot of time doing, but avoiding hypertrophy to keep the necessary body composition for the sport, and not spending too much time in the weight room to prevent unwarranted soreness, are two general rules I would use when training these athletes. 

I touched on the idea of plateauing and detraining in the introduction. This is because the body requires a different stimulus every at certain points to allow for recovery. Even the elite powerlifters do not lift heavy weight (90% 1RM <) all year round. Their body would never be allowed to recover and would never have to adapt to a new stimulus. I will discuss this topic in greater detail in the future. 

In conclusion, aerobic conditioning can do wonders for athletes and non-athletes alike. Rather than avoiding aerobic conditioning, it should be planned for accordingly in order to enhance your body's ability to accomplish the goals you have set for yourself. Recovery is just as important as training, and the better your body is at recovering, the greater the demand you can place on your training. 


-Thank you for your time! If you have any questions please let us know!

Coach Nate Garcia 

nate@tpstrength.com

tim@tpstrength.com

scott@tpstrength.com 

914-486-7678

Instagram: tp_strength



Instability Training... Why?

There seems to be an increased popularity in the utilization of unstables surfaces in the weight-room to improve balance, strength,  core strength, and sports performance. Why add another variable to a skilled movement? What does training on an unstable surface enhance, and/or hinder? To what capacity should you incorporate this modality in your own training regimen?

In the rehab setting, when an individual is returning from injury, it is very common for the usage of unstable surfaces to strengthen all muscles associated with the area being rehabbed. Without going too far out of my scope of practice, the unstable surface promotes co-contraction of agonist and antagonist muscle groups to stabilize the joint and prevent future injury. 

Once someone is cleared from the rehab setting, the capacity to which someone would use instability training methods vary quite a bit. As I have discussed in previous posts, it all depends on what the goal of your program is! Let's look at two people: 1- a sprinter who has 5+ years training experience, 2- an average person not training for competition with < 5 years training experience. 

The sprinter has one goal in mind, and that is to get from point A to point B faster than everyone else. Peaking for these events require detailed programming in order to get the best out of the athlete at the time of the event. A sprinter needs to the ability to put a high amount of force in the ground in a very short amount of time. To aid in force absorption and redistribution, sprinters have the ability to disinhibit the natural inhibitors of muscle contraction. This is part of the reason why they look so fluid running down the track! This has a lot to do with co-contraction of muscles, sprinters want agonist muscle groups to shorten rapidly while the antagonist muscle groups relax. This increases the range of motion of the movement, allowing more time for force generation, and shortens the amortization phase of the stretch shortening cycle. I say all that because unstable surfaces promote co-contraction, thus fighting the results we are looking for! They also limit force production in one direction, meaning as you put force in to the unstable surface like sand, or a bosu ball, the force is distributed across the platform rather than back into the movement. Training to improve balance focusing on the usage of unstable surfaces for the sprint athlete would not be recommended. 

As an average person looking to improve overall fitness, I see no problem with using instability training as long as it’s performed safely with a purpose. Exercise should be fun for people, and if someone is inclined to use a bosu ball to do push-ups because they like the challenge… why not? Sure, they might be emphasizing efficient strength development, but there isn’t strength competition to prepare for either. Instability training provides a unique challenge, and easy way to track improvement with added variables to the exercise. As long as someone has a general strength foundation, and demonstrates that they can do the movement safely, I say go for it. BUT, you should know what instability training promotes if you are utilizing it in your program. If the goal of your program is to increase maximal power output, and one of your programs pillar’s is the utilization of unstable surfaces… I will shake my head in disappointment. 

People use unstable surfaces to promote balance ability, core development (abs, obliques, erectors, etc), a warm up to “activate” muscle groups before the session, rehabilitation from injury, and sometimes just to show off! These are all true statements, but are there better ways to accomplish these goals? For example, nothing has been shown to better develop core strength than performing standing, total body movement with an external load (LIKE A BACK SQUAT), and that includes the 30 minute crunch class. There is a time and a place for unstable surfaces, and IMO that is in the rehab setting, a warm up, a new challenge for someone not training for a competition, and to only be attempted safely by someone with training experience. 


Thank you for your time! If you have any questions, please reach out to us!


Instagram: tp_strength

train@tpstrength.com (Coach Nate)

scott@tpstrength.com

tim@tpstrength.com

Phone: 914-486-7678