Plyometrics in the Sand

As we continue to dive into the intricacies of plyometrics, we are going to come across a wide variety of scenarios when training the stretch shortening cycle (SSC). One of the most important variables is the surface on which the training takes place! Plyos in the sand highlight certain qualities of the SSC, and play down the effects of others. 

Why would you want to be jumping and landing on a softer surface in the first place? Well, the first benefit is the reduced impact on the joints compared to landing on hard surfaces. If one of the goals of the session is to protect the athlete from the rigors of hard landings, while still accomplishing quality work, plyos in the sand does that. Mirzaei and company looked at muscle soreness and how plyometrics in the sand affected it. Their study mentioned  that the sand work resulted in decreased muscle soreness, which in turn allowed for more work to be accomplished. (Mirzaei, 2014)

But coach Nate! What about the increased time spent in the amortization phase of the SSC, and the subsequent loss of elastic energy stored because of the increased time spent on the ground when stretching the muscle!?? Don’t worry my readers, it all depends on the goal of the session! The SSC in totality is one of the most powerful mechanisms we humans have that allow us to exert extreme amounts of force. If you take away the ability of one component of the SSC, in this case the eccentric component, the concentric component has to do some work to get the same task completed. This is similar to the max strength phase of training. The movement is slower, the benefit of the SSC is blunted, and a greater emphasis is placed in the concentric ability of the muscle. In the same study I referenced earlier, Mirzaei and company also mentioned that a 6 week plyometric program completed in the sand resulted in increased vertical, static, and long jump with increases in maximal strength, and decreased sprint times (Mirzaei, 2014).  All good things right? But, the study was completed on untrained individuals, and many of those adaptations could be accredited to neural adaptation, which increases the efficiency of the body completing the task. 

In my professional opinion, I do not have a problem with plyometric sand training. It is another stimulus you can expose an athlete to that still promotes quality training while protecting the body from hard landing. As long as the reason behind this training is sound, go ahead! If you goal is to focus on decreasing the amortization phase and getting off the ground as quickly as possible, then the sand is not the place to be. 


-Thank you for your time! If you have any questions please let us know!


Coach Nate Garcia 

nate@tpstrength.com

tim@tpstrength.com

scott@tpstrength.com 

914-486-7678

Instagram: tp_strength

Reference

Mirzaei, B., Norasteh, A. A., & Asadi, A. (2013). Neuromuscular adaptations to plyometric training: Depth jump vs. countermovement jump on sand. Sport Sciences for Health, 9(3), 145-149. doi:10.1007/s11332-013-0161-x





Instability Training... Why?

There seems to be an increased popularity in the utilization of unstables surfaces in the weight-room to improve balance, strength,  core strength, and sports performance. Why add another variable to a skilled movement? What does training on an unstable surface enhance, and/or hinder? To what capacity should you incorporate this modality in your own training regimen?

In the rehab setting, when an individual is returning from injury, it is very common for the usage of unstable surfaces to strengthen all muscles associated with the area being rehabbed. Without going too far out of my scope of practice, the unstable surface promotes co-contraction of agonist and antagonist muscle groups to stabilize the joint and prevent future injury. 

Once someone is cleared from the rehab setting, the capacity to which someone would use instability training methods vary quite a bit. As I have discussed in previous posts, it all depends on what the goal of your program is! Let's look at two people: 1- a sprinter who has 5+ years training experience, 2- an average person not training for competition with < 5 years training experience. 

The sprinter has one goal in mind, and that is to get from point A to point B faster than everyone else. Peaking for these events require detailed programming in order to get the best out of the athlete at the time of the event. A sprinter needs to the ability to put a high amount of force in the ground in a very short amount of time. To aid in force absorption and redistribution, sprinters have the ability to disinhibit the natural inhibitors of muscle contraction. This is part of the reason why they look so fluid running down the track! This has a lot to do with co-contraction of muscles, sprinters want agonist muscle groups to shorten rapidly while the antagonist muscle groups relax. This increases the range of motion of the movement, allowing more time for force generation, and shortens the amortization phase of the stretch shortening cycle. I say all that because unstable surfaces promote co-contraction, thus fighting the results we are looking for! They also limit force production in one direction, meaning as you put force in to the unstable surface like sand, or a bosu ball, the force is distributed across the platform rather than back into the movement. Training to improve balance focusing on the usage of unstable surfaces for the sprint athlete would not be recommended. 

As an average person looking to improve overall fitness, I see no problem with using instability training as long as it’s performed safely with a purpose. Exercise should be fun for people, and if someone is inclined to use a bosu ball to do push-ups because they like the challenge… why not? Sure, they might be emphasizing efficient strength development, but there isn’t strength competition to prepare for either. Instability training provides a unique challenge, and easy way to track improvement with added variables to the exercise. As long as someone has a general strength foundation, and demonstrates that they can do the movement safely, I say go for it. BUT, you should know what instability training promotes if you are utilizing it in your program. If the goal of your program is to increase maximal power output, and one of your programs pillar’s is the utilization of unstable surfaces… I will shake my head in disappointment. 

People use unstable surfaces to promote balance ability, core development (abs, obliques, erectors, etc), a warm up to “activate” muscle groups before the session, rehabilitation from injury, and sometimes just to show off! These are all true statements, but are there better ways to accomplish these goals? For example, nothing has been shown to better develop core strength than performing standing, total body movement with an external load (LIKE A BACK SQUAT), and that includes the 30 minute crunch class. There is a time and a place for unstable surfaces, and IMO that is in the rehab setting, a warm up, a new challenge for someone not training for a competition, and to only be attempted safely by someone with training experience. 


Thank you for your time! If you have any questions, please reach out to us!


Instagram: tp_strength

train@tpstrength.com (Coach Nate)

scott@tpstrength.com

tim@tpstrength.com

Phone: 914-486-7678